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ABSTRACT 

Prices of solar PV have dropped dramatically, by half in just the past 6 years.  But looking simply at prices 

paid today, there is considerable heterogeneity. For systems installed in 2014, the 10-90 percentile 

range for the observed $/W spans nearly a factor of 2. This apparent price dispersion raises policy-

relevant questions, such as: why are consumers paying more than they need to? And would better-

informed consumers increase the social benefits of solar PV? This paper analyzes price dispersion in U.S. 

residential PV installations between 2008 and 2014.  Focusing on the most commonly used metric in 

previous studies of price dispersion, we use the quarterly coefficient of variation (CV) as our measure of 

price dispersion.  We find higher levels of price dispersion in our data (0.22) than the average of 55 

previous studies we reviewed (0.16).  We also find that price dispersion has been persistent; it has 

remained above 0.15 since 2000 with no trend over that period.  If anything, price dispersion has been 

increasing recently during the period for which we have complete data, 2008-14.  Econometric analysis 

of the factors affecting price dispersion supports theories from the economic literature focusing on 

access to information and the costs and benefits of consumer search.  Factors that increase the 

consumer payoffs of investing time in searching for information—system size and the value of solar—

are associated with lower levels of price dispersion.  Factors that reduce the costs of search—neighbors 

who have recently installed solar and having third-party quotes available—are also associated with less 

price dispersion.  These results provide support for the importance of public efforts to enhance access to 

price information, e.g. by supporting private sector price quote providers.  The results also point to the 

particular need for information in nascent markets for PV in which access to the experience of neighbors 

is not available. 
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1. INTRODUCTION 

The halving of the price of residential solar photovoltaic (PV) systems since 2009 has been a major driver 

in the six-fold increase in grid-connected residential and non-residential PV installed capacity in the 

United States (U.S.) (Barbose and Darghouth 2016).  In 2016, PV accounted for nearly 39% of new 

electricity generation in the U.S.  Moreover, the cost of PV is rapidly approaching the U.S. Department of 

Energy’s SunShot 2020 cost goals for utility, commercial, and residential applications (Woodhouse, 

Jones-Albertus et al. 2016).  However, these impressive changes obscure the complication that not 

everyone receives low-priced solar.  People pay dramatically different prices for what, on its face, 

appears to be a homogenous good, i.e., devices for producing kilowatt hours of solar electricity.  The 

observed price per watt paid for installed residential PV systems in 2014 spans a factor of four.  Why is 

there such a range of prices for a seemingly indistinguishable good? Why are some people paying four 

times as much as others? Are these prices excluding some people from the market, and consequently 

limiting the benefits of solar PV? Is there a role for public policy to remedy this situation?   To address 

these questions, in this paper, we begin by examining the large set of studies in industrial organization 

that focus on the levels and sources of price dispersion in other sectors in section 2.  In section 3, we 

outline our approach to measuring and analyzing price dispersion in U.S. residential PV, making use of a 

variable-rich PV system price data set.  In section 4, we provide a broad set of descriptive statistics 

establishing the levels and trends in price dispersion.  Section 5 includes results of our econometric 

analysis of the factors affecting price dispersion in PV.  Section 6 concludes with a discussion of the 

implications of our findings. 

 

2. REASONS FOR PRICE DISPERSION 

Economic theory suggests that a homogenous good will sell for the same price in all locations, a concept 

commonly referred to as the law of one price. Price dispersion refers to a violation of the law of one 

price where consumers pay different prices for the same good or service. To understand price dispersion 

in PV, we start with the half a century of studies in industrial organization about why the law of one 

price does not always hold. From the first studies, costly access to information about attributes of a 

good has consistently provided an explanation of observed price dispersion (Stigler 1961, Salop and 

Stiglitz 1977, Reinganum 1979, Varian 1980) – a link that we further explore below. To be sure, studies 

have shown other explanations play a role as well, including: differences in production costs, 

distribution costs, price elasticity of demand, price discrimination, market structure, regulations, 

currency fluctuations, inflation, purchase-related amenities, and distinctions among apparently 

homogenous goods. Some of these factors can result in product differentiation, such that observed price 

heterogeneity for heterogeneous goods may be spuriously attributed to price dispersion. To determine 

if price dispersion actually exists, we need to control for product-differentiating factors, especially 

quality, market segments, and input costs. We discuss and control for product-differentiating factors 

that play a role in this case study. However, the center of this investigation is assessing the notion of 

heterogeneous access to information: that price dispersion can persist if information remains costly and 

some consumers choose not to become informed (Pratt, Wise et al. 1979, Burdett and Judd 1983).  We 

focus on the consumers’ incentives to search for information.  
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Search costs are particularly important in PV because consumers must choose a firm to install their 

system and may even have some choice about what type of system to install. Buying decisions are 

complicated for several reasons: the technology is new and dynamic; historically, almost no residential 

consumer is used to making capital investments to procure electricity; the value of PV to the consumer 

is associated with complicated rate designs and changing policies (Blackburn, Magee et al. 2014); and PV 

systems typically last 20 years or more, precluding repeat purchases. Furthermore, because the 

technology is new, still rare, and infrequently purchased, consumers likely have few acquaintances from 

which to obtain trustworthy experiential information (Rai, Reeves et al. 2016) (Rai et al. 2016). From a 

policy perspective, understanding the reasons why prices vary is important for improving the 

effectiveness and cost-efficiency of policies promoting the adoption of PV. We review the explanations 

of price dispersion to develop a model of PV prices, which we then empirically test.  

2.1. Heterogeneous producers, goods, and consumers  

Three categories of explanation are straightforward. Producers have uneven costs of production, the 

goods they produce are imperfect substitutes, and consumers value attributes differently.  

2.1.1. Production costs and competition 

Because positive consumer search costs can allow producers to act as local monopolists (Diamond 

1971), pricing can diverge from a competitive equilibrium and thus differences in producer costs can 

create price dispersion (Carlson and McAfee 1983, Perloff and Salop 1985, Spulber 1995, Walsh and 

Whelan 1999). Heterogeneous producer costs contribute to price dispersion in studies of agriculture 

products (Kano, Kano et al. 2013), automobiles (Goldberg and Verboven 2005), electricity (Davis, Grim et 

al. 2013), and U.S. domestic imports more generally (Yilmazkuday 2014). Not only manufacturing costs 

but differences in other costs such as wages (Van Nieuwerburgh and Weill 2010), exchange rates 

(Goldberg and Verboven 2001), inflation (Van Hoomissen 1988), taxation (Chouinard and Perloff 2007), 

and transportation and distribution affect prices. Of particular relevance to this study, differences in 

advertising costs have also been found to affect prices (Baye, Morgan et al. 2006). A study of 

homogenous manufactured goods, including concrete, cardboard boxes, and steel cans, found that firm 

size contributed to much of the observed costs differences across firms within products (Roberts and 

Supina 1996).  

These differences in costs often become especially relevant in a setting of imperfect competition. 

Somewhat paradoxically, several studies have found that price dispersion increases in the number of 

firms in the market (Carlson and McAfee 1983) due to: each firm having a lower likelihood of being the 

lowest price firm (Stahl 1989), enhanced incentives to set extreme prices (Chandra and Tappata 2011), 

and small effects of competition on the highest prices (Allen, Clark et al. 2014). Others have found the 

opposite relationship, with dispersion decreasing in competition (Spulber 1995, Barron, Taylor et al. 

2004, Lin and Chen 2014). Furthermore, price dispersion may increase with concentration in competitive 

markets and decrease with concentration in less competitive markets (Dai, Liu et al. 2014). The 

relationship appears positive between market concentration and price dispersion when that 

concentration is high or low and negative when observed at medium values (Chakrabarty and Kutlu 

2014). Price dispersion may increase incentives for entry (Gerardi and Shapiro 2009), stimulate cat-and-

mouse pricing games as large sellers try to price small sellers out of the market (Menzio and Trachter 

2015), and may also reflect predatory pricing among incumbents (Besanko, Doraszelski et al. 2014).  



5 

Many firm costs are decreasing in firm scale, and previous work has indicated large differences in firm 

scale in the case of PV. Similarly, firm experience also affects prices (Gillingham, Deng et al. 2016). Scale 

and experience are thus important factors influencing price dispersion. Note though that sometimes 

costs can increase in scale if firms shift to higher quality inputs (Atkin, Chaudhry et al. 2015). We see 

some indications of this effect in terms of the efficiency of PV panels that firms use. Quality is thus also 

important to control for.  

2.1.2. Product quality 

One reason why information, and the search for it, is so crucial to understanding price dispersion is that 

there may be quality differences among the products being considered. Apparent price dispersion can 

be, at least in part, due to real heterogeneity in the characteristics among products that are substitutes 

for one another (Shepard 1991, Brynjolfsson and Smith 2000, Goldberg and Verboven 2005, Imbs, 

Mumtaz et al. 2010).  Firms may even intentionally differentiate their products, not necessarily to make 

them better, but to introduce price dispersion (Shepard 1991, Clay, Krishnan et al. 2002). Consumers 

may use higher prices as an indication of quality (Brucks, Zeithaml et al. 2000). This literature 

underscores the importance of accounting for quality differences that are observable to all consumers, 

but which study data may not include—including quality differences that are difficult for consumers to 

understand before, or even after, purchase (experience or post-experience goods).  

Just as for other products, for solar PV it is also possible that an apparently homogenous good—installed 

capacity in kW— may actually be a heterogeneous one. Hence what seems to be price dispersion may in 

fact partially be a result of product heterogeneity. The consumer benefit from installed PV depends not 

just on the capacity (kW) of the system, but also how that system performs. Two systems with identical 

installed costs and capacity may produce different quantities of electricity based on installation factors 

such as equipment choice, system tilt, and site selection. Conceptually, a system with a higher kWh to 

kW ratio (more output per unit of installed capacity) has a greater kWh return on investment than a 

system with a lower kWh to kW ratio. Therefore, differences in installed system characteristics can help 

capture differences in the final consumer good involved, kWh of electricity. Installed systems are 

comprised of both a durable good (panels with 20-year warranty) and a service (installation); from our 

data, we can estimate that the latter constitute well over half of system costs. Certain installed system 

characteristics may be valued, e.g. reputation, capital cost over-runs, and help in accessing incentives. 

This raises the question of whether there is substantial variation in the quality of installed systems.  

2.1.3. Consumer attributes 

Consumer preferences also contribute to price dispersion. This might be due to differences in price 

elasticity of demand in certain markets (Goldberg and Verboven 2005) or consumer preferences for 

certain brands (Imbs, Mumtaz et al. 2010). With frequently purchased, homogeneous retail food goods, 

shopping preferences (‘supermarket lovers’ vs. ‘social shoppers’) play a large role in the existence of 

monopolistic retailers and small retailers both staying in business (Anania and Nistico 2014). Studies 

have found that dispersion increases in income and falls in educational attainment (Marvel 1976). 

Another finding suggests price dispersion negatively influences trust due to perceived risk (Wu, Vassileva 

et al. 2015).  

In the case of PV, we have seen that, as predicted generally (Marvel 1976), prices do appear to reflect 

consumer incomes (Gillingham, Deng et al. 2016). More centrally to this topic, the one-time purchase, 
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high-cost product aspects may make value sensitive to a consumer’s appetite for risk; risk averse 

consumers may pay more for systems from installers they consider reliable.  

2.2. Costs and benefits of search  

From the perspective of the consumer, one can consider price dispersion resulting from heterogeneous 

consumers’ assessments of the benefits and costs of investing in the search for information about a 

potential purchase. An important outcome is that some consumers will choose to stay uninformed.  

2.2.1. Costly consumer search  

Consumers face different costs in accessing information about product prices and attributes. Previous 

work has attributed price dispersion to differences in search costs in automobiles (Dahlby and West 

1986), gasoline (Chandra and Tappata 2011), and prescription medications (Sorensen 2000). The past 

two decades have seen an increasing body of work looking at the effect of the internet in reducing the 

costs of accessing product information (Bakos 1997, Bailey 1998, Pan, Ratchford et al. 2002).  And while 

these studies find much lower search costs, branding, awareness, and trust remain important to 

purchase decisions (Brynjolfsson and Smith 2000). Kutlu (2015) found that consumers – lacking perfect 

memory and price information – employ heuristics showing whether a product is expensive or not to 

help process price information. This raises another channel of information, trusted peers, who can 

provide information based on experience with trust and at low costs, typically as a co-benefit of social 

interactions (Bollinger and Gillingham 2012, Rai and Robinson 2013).  Assessing this mechanism is 

central to our study. 

2.2.2. Gains to consumer search 

Consumers must also decide if investing in search is likely to generate a payoff. First, if price dispersion is 

perceived as large, the gains to information are also large (Pratt, Wise et al. 1979, Chandra and Tappata 

2011, Jaeger and Storchmann 2011).  There is a ‘value of information’ corresponding to a consumer’s 

expected benefit of being informed (Pennerstorfer, Schmidt-Dengler et al. 2014). This value is the 

difference between the expected price and the lowest price in the market or the reduction in price due 

to search (Marvel 1976).  This dynamic is one reason we use several years of data, under the assumption 

that opportunities for search from the existence of dispersion will have stabilized.  Second, the gains to 

costly information search increase in the price of the good (Stigler 1961, Lach 2002, Eckard 2004, Jaeger 

and Storchmann 2011).  The underlying assumption behind this claim is that search costs increase only 

modestly for more expensive goods; thus, there are scale economies in search. Third, the frequency of 

purchase affects search motivation, with consistent findings of lower price dispersion for frequently 

purchased goods (Nelson 1970, Sorensen 2000). This ‘learning by buying’ mechanism involves a 

combination of lower search costs (via information acquired through experience) and higher payoffs 

(multiple purchases). In the case of durable goods, such as PV, repeated purchases are rare and this 

motivation for search plays little role if any. Although increased search resulted in lower mortgage rates 

in one study (Lee 2014), a repeated finding is that despite the gains to search, many consumers still do 

not invest in accessing information (Ratchford 2009). 

2.3. Measuring price dispersion 

While previous studies have measured price dispersion in a variety of ways, the most predominant has 

been coefficient of variation (CV=variance/mean) (Eckard 2004, Allen, Clark et al. 2014).  Others have 
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used variance (Pratt, Wise et al. 1979, Dahlby and West 1986), standard deviation (Van Hoomissen 

1988), range (Brynjolfsson and Smith 2000, Sorensen 2000), Gini coefficient (Borenstein and Rose 1994), 

10–90 percentile range (Roberts and Supina 1996), and the difference between the two lowest prices in 

a market (Baye, Morgan et al. 2006). Other approaches control for explanatory factors and use the 

residuals to measure dispersion (Barron, Taylor et al. 2004, Jaeger and Storchmann 2011).  Chandra and 

Tappata (2011) assess temporal price dispersion by measuring ‘rank reversals’, changes in a firm’s price 

rank over time. We adopt CV as the primary measure in this study, in part due to its frequent use and 

suitability over long time periods (Baye, Morgan et al. 2006).  

In sum, the existing literature on price dispersion indicates that if searching for product information is 

costly, and some consumers choose to remain uninformed, then we should expect dispersion in prices. 

We thus set out to examine whether these dynamics are at work in the U.S. PV market.  

 

3. APPROACH, METHODS, AND DATA 

We assemble a data set including a large sample of residential PV installations in the past 15 years to 

address the research question: what causes the apparently large range in prices for installed small-scale 

PV systems in the residential sector? 

3.1. The data 

As our primary data source we use installed PV system data from 59 PV incentive programs in 34 U.S. 

states, collected as part of the Lawrence Berkeley National Laboratory’s (LBNL’s) Tracking the Sun (TTS) 

report series (Barbose and Darghouth 2016). The full TTS data set accounts for about two thirds of U.S. 

PV installations since 2000 and is described in detail in the annual TTS report (Barbose and Darghouth 

2016).  We have data on systems installed between 2000 and 2014. We restrict our core analysis to 

2008-14 to focus on more-recent data, and to avoid data quality problems in 2007.  However, we 

include data back to 2000 in the descriptive analyses for which installer information is not used.  In 

addition, we restrict system size to 1-15kW and price per watt to 1-25$/W.  We drop the following types 

of installations: commercial, other types of non-residential customers (e.g. schools), appraised value 

third-party owned (TPO) systems, and those missing identification of the installer.  We also drop the 

small portions of the data that represent building-integrated PV, systems with battery backup and/or 

tracking, self-installs, and systems placed in new construction.  In the end, we have complete data on 

234,666 installations from 2008-14.   

To provide an overview of the dynamics behind our investigation of price dispersion, Figure 1 shows the 

distribution of installed price per watt for the entire 2000-14 data set.  Focusing on the most recent 

year, 2014, Figure 2 shows the nature of dispersion, by illustrating prices within the largest markets 

(counties). 
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Figure 1. Distribution of installed prices (2014 $/W). 

 

 

Figure 2. Distributions of prices (2014$/W) in largest markets (defined by counties), by installs in 

2014.  Gray curve is distribution for all U.S. installations. 

 

3.2. Dependent variable: CV 

We measure price dispersion in a given time and place using the coefficient of variation (CV).  There are 

several ways to define CV with our data.  For example, temporally, one can define CV over months or 

years.  For our analysis we use quarters, an intermediate measure.  Similarly, geographically, one could 

calculate CV over counties, states, or for the U.S. as a whole.  We use counties as the relevant market 

from which consumers make choices.  In our analysis, we calculate CV by quarter within a county.  In 

Figure 3, we compare the CVs in our study—that is the average CV for each quarter and country—to 55 

CVs in other studies of price dispersion for various products. While we would not necessarily expect the 

CVs to be the same, it is nonetheless instructive to see how the CVs for solar PV compare with others.  

Both the 2014 and 2008-14 measures of CV in our data set are above the mean of the other studies 

(0.16). 
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Figure 3. Comparison of coefficients of variation: values from the literature and values from PV data. 

 

3.3. Independent variables 

We use other variables in the TTS data set to estimate predictors of price dispersion.  We build several 

variables using the name of the company that installed each system, which we refer to hence as 

installers.  To account for the level of installer competition we calculate a variable for the concentration 

of market share by installer using a Hirschman-Herfindahl Index (HHI).  We calculate measures of 

experience for each installer, i.e. the count of their previous installations.  We use an index of labor costs 

in each county, as a proxy for firms’ costs in that county and time.  We use demographics for each 

county and time:  educational attainment and household income.  We use the density of households in a 

county (households/km2) as a possible proxy for information distribution.  We account for whether 

systems are third-party owned (TPO) or customer owned (CO).  We include characteristics of the system 

(size in kW) and modules and inverter (efficiency, country of origin, thin-film, and micro-inverter).  We 

use electricity prices, insolation, and all subsidies to estimate the consumer value of solar in each county 

and quarter. For details on how each of these variables was constructed see Nemet, O'Shaughnessy et 

al. (2016). 

We also construct new variables to model access to information from neighbors with solar, access to 

quotes from third-party quote providers, and a variable to estimate system performance.  First, to 

examine access to information from neighbors about solar, we use the addresses of installations to 

construct variables for the count of nearby neighbors who installed PV previously.  As a base 

assumption, we use a 1 km radius to define a neighbor and apply 12 months to account for the 

installations being recent enough to provide relevant information for new purchases (Graziano and 

Gillingham 2015).  We create similar variables for other radii values and time periods.  An important 

rationale for using addresses is the clustering we see throughout the data (Figure 4).  Second, we use 

datasets of quotes provided by third-party quote providers, companies that provide a platform for 

prospective customers to solicit quotes from installers, to assess whether installations had quotes 

available, and how many were provided (see Appendix for detail).  Third, we attempt to account for the 

quality or system performance of the PV system.  This is done in part simply by including the efficiency 
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and country of origin of modules.  To go further we use data on the performance of a small subset of 

systems, for which we have electricity output over multiple years.  In the Appendix, we describe how we 

arrive at a performance ratio for each system in the third and fourth year that system was online.  We 

create a dummy variable for installers who have a mean performance ratio above average and consider 

these installers high-quality installers. 

 

Figure 4. Annual new installations in two San Francisco Neighborhoods 2008 – 2011. 

 

Finally, we use counties to define markets.  This approach is common in previous studies (Gillingham, 

Deng et al. 2016), but we recognize that other approaches to defining markets may also be useful to 

explore.  Counties are political jurisdictions that may represent somewhat arbitrary definitions for the 

space over which potential PV customers search for information about prices.  Thus as a robustness 

check we draw on recent work using an alternative scheme for defining markets, based on the presence 

of installers rather than political jurisdictions (O’Shaughnessy, Nemet et al. 2016).  The Appendix 

provides a summary of this approach.  Figure 5 shows how the approaches differ using the example of 

the Phoenix metropolitan area.  The variable most sensitive to the choice of market definition, installer 

HHI, has a correlation of 0.55 between the county definitions and the new installer-driven definitions. 
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Figure 5. Illustration of differences in solar PV markets through a county-level approach (left map) 

and installer-based approach (right map) in the greater Phoenix area. Each color represents a 

separate market. Gray boundaries correspond to zip codes.  

 

4. DESCRIPTIVE RESULTS 

4.1. Differences in CV by groups 

As a first look at the relationship between a subset of the variables that the literature establishes as 

predictors of price dispersion and CV in our data, we show mean prices and CV for several groups of the 

data set (Table 1).   

Theories of consumer search predict that higher-value goods will show less price dispersion because the 

benefits for consumers of investing in search are higher for those than for goods with lower value.  We 

use system size as a proxy for the size of the consumer’s investment.  The results for system size (watts) 

support this prediction; CV, which is calculated from unit prices ($/W), is lower for the largest category 

of systems, those >7kW, and the middle category CV is lower than that for the smallest systems. 

Similarly, in 2014 we see slightly lower variability in prices for markets where the value of solar is above 

the average price of an installed system in 2014 ($4.56/W), although we see the opposite relationship 

for the longer 2008-14 period.  We also see much less price dispersion in TPO systems, where a 

customer hosts and buys power from a system owned by a third-party company, compared to customer 

owned (CO) systems. Third-party system owners generally purchase and own multiple systems. Lower 

price dispersion in TPO systems supports the notion that companies that pay for many systems will see 

higher gains from search than homeowners who purchase only one.  Third-party system owners face 

similar information challenges around quality and costs, but face higher payoffs from search and also 

face lower costs from search in that they can use information from previous transactions to inform 

current ones.  TPO providers also sometimes use standard pricing that they offer to installers; their 

search in this case thus consists of determining what price to offer installers. 

The price dispersion literature also predicts that price dispersion will be lower when the costs of search 

are lower, such as due to easier information acquisition from neighbors.  The neighbors variable shows 

some of this effect, with lower dispersion in areas with at least one install within 1km in the previous 12 

months; we do not see as strong an effect at higher levels of neighbors.  The availability of quotes from 

third party providers should also reduce price dispersion.  We see this as well, with markets that had at 

iii 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

Executive Summary 
A growing body of research seeks to explore the effects of solar photovoltaic (PV) market 

dynamics on competition and ultimately on prices. Researchers have found significant 

associations between installed system prices and PV industry concentration, numbers of 

installers, and installer size and experience (Wiser et al. 2007; Barbose et al. 2015; Gillingham et 

al. 2016; Nemet et al. 2016). However, the use of jurisdictional boundaries (e.g., zip code, 

county, state) as proxies for market boundaries may misrepresent the true market structure and 

limit understanding of solar PV market competition, firm relationships, and price trends.  

This paper develops an approach to delineate solar PV market boundaries based on the spatial 

distribution of installer firms. The basic premise of the approach is that the extent to which 

different installer firms exert price constraints on one another may be inferred from their spatial 

distributions. We develop an algorithm based on an installer overlap coefficient (IOC) that 

calculates the percentage of installers that are shared between multiple geographic areas. The 

IOC algorithm allows us to delineate solar PV market boundaries around clusters of local 

installer communities (Figure ES-1).  

Markets in greater Phoenix area through county-
level approach 

 

Markets in greater Phoenix area through installer-
based approach 

 

Figure ES-1. Illustration of differences in solar PV markets through a county-level approach (left 
map) and installer-based approach (right map) in the greater Phoenix area. Each color represents 

a separate market. Gray boundaries correspond to zip codes.  

Note: Gray areas are excluded from the analysis. 

The installer-based approach exhibits several desirable properties. First, the IOC demonstrates 

that installer communities become increasingly dissimilar at greater geographic distances, 

suggesting that a county-level approach to market definition may be overly broad. Second, the 

IOC approach produces more market granularity than the county-level approach (Figure ES-2). 

Increased market granularity may allow future PV market research to study the role of local 

market dynamics on pricing with more precision. Third, spatial statistics demonstrate that spatial 

correlations in market metrics, such as installed prices, decrease with distance and that installer-

based markets may better capture highly local market spatial correlations. 
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least 1 quote per install showing lower CV than those with less than one quote per install.  Of course, a 

multivariate approach is needed to identify these effects, as well as the impacts of other variables. 

The literature is ambiguous about the effect of market concentration.  For PV in 2014, we observe more 

price dispersion in less concentrated markets. However, this is not the case for the earlier years, perhaps 

underscoring the complex effects of market concentration. Because California accounts for more than 

half of our data set, we assess whether it is structurally different from the rest of the US.  While prices 

are higher in California, CV is the same. 

Table 1. Descriptive statistics of PV prices ($/W) grouped by predictors of price dispersion. 

   

 

4.2. Trends in CV and HHI 

Figure 6 shows the quarterly CV for the entire U.S. One can see no trend over the full 2000-14 period, 

although clearly an increase during the 2008-14 period, on which we focus.  Note that the denominator 

for CV, price, has been declining steadily over this time, as seen in Figure 1.  We also show the trend in 

quarterly CV for the largest counties (Figure 7).  The 2 largest are clearly increasing while the 3rd and 4th 

are slightly decreasing.  We show state level trends in Figure 8.   
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Figure 6. Quarterly coefficient of variation, all U.S. 

 

 

Figure 7. Trend in quarterly CV in largest counties (based on 2014 installs). N is for all years. 
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Figure 8. Trend in quarterly coefficient of variation (CV) by state. 

 

In Figure 9 we compare the level of recent (2014) CV (horizontal axis) with the annual trend (% change 

per year) in CV from 2008-14 (vertical axis) for each state.  The size of each circle represents the number 

of installations.  Trends in CV that are significantly different from zero are marked in red.  The total US 

means are marked by a small circle that is not scaled by count of installs.  In some markets, CV has been 

rising and is now quite high (AZ and MD).  CV is only decreasing in a few small markets.  NJ’s 2014 CV is 

below average but has been increasing.  NY and MA are notable as large markets in which CV is below 

average and relatively stable.  CA is about at the U.S. average (in part because it is influential in 

determining the average) and has been increasing at below the U.S. average.  To sum up Figure 9, 1) in 

almost every state CV is above the average in the literature on price dispersion (0.16) and 2) in almost 

every state CV has been increasing. 



15 

 

Figure 9. Trend in CV 2008-14 and level of CV in 2014 by state. 

 

We also look at the trends in HHI by market by quarter.  Figure 10 shows HHI for the 6 largest counties.  

Concentration has generally been increasing in recent years.  Only in AZ (Maricopa) is it particularly high. 

 

Figure 10. Trend in HHI in 6 largest markets using county definitions (based on 2014 installs). N is for 

all years. Dashed lines are DOJ thresholds for ‘moderately and highly concentrated.  Note that the 

third largest county, Suffolk County NY, is missing installer names.  
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5. ANALYTICAL RESULTS 

5.1. Estimator 

We regress our measure of price dispersion, the coefficient of variation (CV), on variables that the 

literature has pointed to as important for price dispersion.  Except for the system characteristics, all 

variables are aggregated as means at the county level by quarter.  All variables are in logs.  In the base 

specification, we have 5153 observations. 

CVit = β0 + β1COMPit + β2FIRMit + β3SRCHCOSTit + β4SRCHBENEFITit + β5MODist + s + t+ eit 

for each market i, and quarter t. COMP includes our variable for measuring competition in a market: 

market-level HHI. FIRM includes all firms’ county-level experience, as well as labor costs in the market. 

SRCHCOST is a vector of variables that might affect the costs of search for pricing information: 

education, household income, TPO, market density (households per km2), neighbors who have installed 

PV, and a proxy for the availability of third-party quotes.  SRCHBENEFIT is a vector of variables that 

affect the payoffs of searching for information: system size and the value of solar.  MOD is a vector of PV 

system characteristics including module price index (national average), module efficiency, whether the 

modules are manufactured in China or are thin film, and whether a microinverter is used.  For the 

system characteristics, we measure the dispersion (CV) within a county quarter, rather than the means.   

To allow for state-quarter fixed effects, we also add binary variables for the state and the quarter.  In 

Figure 11 we show a kernel density plot of the dependent variable, CV by quarter by county. 

 

Figure 11. Dependent variable: logged (y=ln(cv) + 1) coefficient of variation by quarter by county 

2008-14. 

5.2. Main Results 

Table 2 shows our main results regressing the coefficient of variation on the variables described above, 

with all variables in logs.  The first nine variables in Table 2 (from “Concentration (HHI)” through “U.S. 

module prices”) are used in every specification.  Model 1, our base specification, uses market density 
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(households/km) to represent the efficiency of information transmission.  Model 2 substitutes the count 

of PV neighbors in a 1km radius for market density; as indicated in the ‘N’ row, note that we lose about 

1/3 of observations that are missing geocoded addresses.  Model 3 uses Model 1 and adds another form 

of information transmission, whether third-party quotes were available at the time of the application.  

Model 4 is the same as Model 1 but drops the state and quarter fixed effects to assess their impacts.  

Model 5 adds a proxy for installer quality: whether the installer’s performance ratio is above average.  

Model 6 adds system characteristics, which might proxy for quality, to model 1.  Both model 5 and 6 

omit large portions of the database for which we are missing those added characteristics.  

Table 2. Coefficient estimates from regressions by quarter by county on Xs for 2008-14 installs 

(dependent variable=log CV). State and quarter effects included.  System characteristics measure 

dispersion within a county quarter.  All other x’s are the logged mean for each county and quarter.   

 

 

The base specification includes 5153 county-by-quarter observations, with substantially fewer 

observations in other specifications when we include variables that are missing for many counties: 

addresses, performance, and module information.  Measures of fit make clear that much of the 

variation in CV is unexplained by the variables we include here—as is consistent with most studies of 

price dispersion.  However, these fits are quite high compared to the set of studies on price dispersion 

that we review in section 2.  Fit is notably higher in model 5, which includes installer quality.  That 

variable however is not significant indicating that the high fit in model 5 may be due to restricting the 

data to primarily California installations. 

To put the results shown in Table 2 in context, Figure 12 provides estimates of the magnitudes of the 

effects of each of the significant variables for the base model specification, as well as quotes (from 

model 2) and neighbors (from model 3).  We use the 5th to 95th percentile range of each variable and 
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estimate the effect on CV of moving from the mean of that variable to the end of this range.  The 

variables are sorted from highest impact to lowest.  For example, moving from the mean share of TPO 

systems in a county in a quarter (18%) to the 95th percentile (91% of systems are TPO) would reduce the 

CV by 18%. Conversely, moving TPO share from the mean to the 5th percentile (no TPO systems) would 

increase the CV by 4%. This effect produces the largest range of the variables considered, underscoring 

the importance of the ownership of the systems for price dispersion.   

 

Figure 12. Sizes of effects of significant variables on coefficient of variation.  Range of effects on CV 

shown for shifting each variable from its 5th to 95th percentile.  The sign of each effect is included in 

parentheses. 

 

Several variables stand out as important in these specifications: 

1) TPO.  As mentioned above, the effect of TPO share on CV is consistently negative and significant 

across all 6 specifications in Table 2.  As mentioned in the example above, the variation in TPO has the 

largest effect on CV of all the variables.  This result is expected given previous work showing that the 

price distribution of TPO systems is substantially narrower than that of customer owned systems 

(Nemet, O'Shaughnessy et al. 2016).  We note that this variable is somewhat particular to the US PV 

industry, as third-party ownership is not as common elsewhere.  Furthermore, the data on prices of TPO 

transactions are not quite as reliable as owned prices, due to the presence of standardized “block” 

pricing between third-party owners and solar installers as described earlier; this is true even after we 

have removed the clearly non-credible prices, those that use “appraised values.”1 However, these are 

real prices paid in the market.  Moreover, there is an additional economic explanation that the TPO 

                                                           

1 For “appraised value” systems, there are no customer/owner transactions for PV systems installed and owned by 

the same installer (integrated third-party owned installers). Hence reported prices are not transaction prices but 

appraised values; we have not included those systems in our sample. See Barbose and Darghouth (2016) for more 

details. 

-20% -15% -10% -5% 0% 5% 10% 15%

TPO share (-)

Income (+)

Educ. (-)

Neighbors (-)

conc. HHI (-)

Experience (+)

Value of solar (-)

Quotes per install (-)

System size (-)
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variable does reflect.  The consumer search explanations of price dispersion discussed above emphasize 

the costs of consumer search, learning from repeated purchases, and payoffs from scale.  For customer 

owned systems, there are no repeat purchases and scale is limited by roof area in most cases and is 

truncated at 15kW in our data.  In contrast, third-party owners are involved in purchasing hundreds of 

systems and can spread the costs of search over megawatts rather than kilowatts. We consider 

alternative specifications in which we drop TPO systems in the robustness checks below, which generally 

show similar results as the main specifications. 

2) Neighbors.  The effect of neighbors on CV is also negative and significant (this variable is only present 

in Model 2).  Neighbors here is defined as the count of systems installed in the previous 12 months 

within a 1 km radius of the installation.  This result fits directly with the costs of consumer search 

explanation discussed in the economic literature.  Having neighbors with recent purchase experience 

provides a channel for low cost information dissemination.  It allows a one-time purchase to obtain 

some of the benefits of learning-by-shopping emphasized in the economic literature.  Further, the local 

aspect of the information makes it likely to be both relevant and trusted, potentially providing the new 

customer with information about pricing strategies, negotiation experience, reliability, and installer 

quality.  Note that we have included variables for education and income so this effect is not just a proxy 

for having neighbors of similar socio-economic status.  We also note that the significance of income and 

education are lost when neighbors are added.  From Figure 12 we see that the size of the effect is in the 

middle for these variables and that it is asymmetric, in part because many consumers have no recent 

purchases in their neighborhood.  Moving from the mean number of neighbors (0.8) to the 95th 

percentile (4.1) reduces CV by 5%.  We examine alternative constructions of the neighbors variable in 

the robustness checks below. 

3) Experience.  The average experience of installers in a county is associated with higher levels of price 

dispersion, an effect we see consistently significant across all specifications.  This variable, the count of 

previous installations by installer, combines both knowledge gained from experience and scale.  With 

more experience in the market there is a greater range in prices.  Note that this effect is separate from a 

market power effect which is captured by the concentration variable; the two are negatively correlated 

and only weakly (-0.20).  One interpretation is that part of the learning from experience by installers 

involves learning about the market, about adopters, and about the sales process.  This could indicate 

that experience leads to more price dispersion because experienced installers are better able to price 

discriminate.  We know from previous work that there appears to be evidence of value-based pricing 

(Gillingham, Deng et al. 2016). 

4) Value of solar.  The effect of value of solar, i.e. the sum of solar subsidies and electricity bill savings in 

$/W, on CV is consistently negative and significant.  The higher the value of a solar system (on average in 

the area), the lower the price dispersion.  From a consumer search perspective, this result fits generally 

with the literature.  With high benefits to search, consumers will be more likely to invest the time 

required to find reputable installers and competitive pricing. Alternatively, those consumers who face a 

lower value of solar (due to lower retail rates, or a lack of local financial incentive) but that still install a 

PV system may be systematically less concerned about the underlying cost of PV and “finding the best 

deal”, and may instead be relatively more motivated by other considerations (the environment, 

impressing the neighbors, etc.).  
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5) Quotes.  Our variable for quotes provides another measure of access to information.  In model 3, the 

quotes variable is the number of third-party quotes provided in a county in a quarter divided by the 

number of systems installed.  The coefficient is negative and significant.  Third party provision of price 

quotes to consumers reduces the cost of accessing price information.  Only a small number of 

parameters are needed for the consumer to begin to obtain quotes.  Contrast this with negotiating 

pricing with individual installers, in which obtaining pricing is costlier and more time consuming, in part 

because providing pricing information is deeply embedded in the sales process.  The result here is 

clearly in line with economic theory; having access to quotes reduces price dispersion.  This result also 

provides some encouraging initial evidence on the effects of government programs to promote the 

availability of third-party quotes.  The sizes of the effects are small.  However, note that we are working 

with a subset of quote providers, so the range of 0-3 third-party quotes per installation understates the 

range of quotes provided. 

6) System size:  Results from economic studies of price dispersion generally indicate that as the 

magnitude of a purchase increases, consumers will find it beneficial to invest in search and thus price 

dispersion should be decreasing in purchase size.  That is the result we find here.  Coefficients for the 

size of the installation are negative in every specification.  They are significant in each specification 

except for model 6, when the module characteristics are added and about a third of observations are 

dropped. 

7) Concentration:  Our measure of the effect of installer industry concentration (the HHI) is consistently 

negative, although not significant in every specification.  The interpretation of this result is that the 

more concentrated the industry, i.e. less competition among installers, the lower the price dispersion.  

The economic literature is notably ambiguous about the expected direction of this effect.  As discussed 

in Section 2, concentration would be expected to increase price dispersion due to market power and the 

ability to price discriminate.  But other studies argue that the fewer installers operating in concentrated 

markets tend to have less dispersion in costs and weaker incentives to set extreme prices.  Our results 

support the latter set of effects, but are not entirely clear, consistent with the ambiguity of the sign of 

the effect in the literature. 

8) Other variables.  We also see significant effects in other variables, but these are less robust across 

specifications.  Education has a negative effect on price dispersion in all models except when neighbors 

are added in Model 2.  It is significant in three of the models.  Income is positive in all models but 

significant in only three.  It also loses significance when the neighbors variable is added.  The signs of 

these demographic variables are as expected from the literature: higher education would reduce the 

costs of search, and income would increase the opportunity cost of search.  The result on neighbors is 

the dominant one, however, and has a clearer link to information transmission.  Correlations between 

neighbors and these demographic variables are 0.27-0.30.  None of the results for another variable, 

labor costs, are significant.  One might test the result of within-county wage dispersion, but our 

experience in previous work is that prices are insensitive to wage variation (Gillingham, Deng et al. 

2016). 

That the effect of national average module prices is negative, although not generally significant, fits with 

the notion that consumers will find more value in engaging in search when the amounts at stake are 

higher.  Note that we also include time fixed effects so module price really is the effect of price levels, 
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not the underlying time trend in CV.  It thus also makes sense that module price index becomes highly 

significant only in model 4 when the time trend fixed effects are dropped. 

Market density, which might be a proxy for information transmission, is not significant.  Our measure for 

installer quality, performance ratio, is not significant.  We do see larger effects for value of solar and TPO 

in Model 5 when it is added.  Unsurprisingly, the size of the experience effect is small in Model 5, 

implying that some of the experience effect is attributable to quality in the form of improved 

performance.   

The effects of dispersion in system characteristics (efficiency, Chinese, and thin film), in a county 

quarter, are positive and significant.  The fit is also higher.  Expectedly, variation in system 

characteristics explains some of the dispersion in prices. 

5.3. Robustness checks 

We run several alternative specifications to assess whether the results above remain robust under 

alternative assumptions on market definitions, neighbors, quotes, third-party ownership, and time 

trend.  First, in Table 3 we run the same models as in Table 2 but using the alternative definitions of 

markets based on O’Shaughnessy, Nemet et al. (2016), rather than counties.  We find similar results.  

Fits are generally higher, now with more than twice as many observations in each model.  All of the 

seven primary variables of interest retain their size and significance.  Neighbors and quotes retain their 

signs and significance; the neighbors coefficient is smaller and the quotes is larger.  Concentration is 

now consistently significant.  We note that this is the variable for which we would expect the new 

market definitions to have the largest change.  HHI is especially sensitive to whether markets are 

defined by counties or by installer activities.  It thus bolsters credence that price dispersion is decreasing 

in concentration rather than increasing. As mentioned above, we again have no theoretical prediction 

about what direction the effect of HHI will have. The main reason we use the new market definitions as 

a robustness check, rather than as our preferred specification, is that there may be some endogeneity in 

how the markets are defined.  That is, installers’ decisions about entering and pricing in a market may 

play a role in how the borders of markets are defined.  That is not true of counties, which are clearly 

exogenous to installers’ decisions. 
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Table 3. Coefficient estimates from regressions of y=log CV by quarter by new market definitions on 

Xs for 2008-14 installs. State and quarter effects included.  System characteristics measure dispersion 

within a county quarter.  All other x’s are the logged mean for each county and quarter.   

 

Second, we include further robustness checks on key variables related to consumer search: neighbors 

and quotes (Table 4).  For comparison, we include Model 1 from Table 2, and in Model 2 the original 

neighbors variable from Table 2.  Model 3 includes an alternative definition of neighbors, the count of 

PV installations within 1km in all previous periods, rather than restricting to the 12 months prior.  Model 

4 uses the quote variable from Table 2 (third-party quotes per installation) and Model 5 uses the 

alternative measure: whether any third-party quotes had been provided in that county in that quarter or 

any previous quarter.  We find that the inclusion of the effect of neighbors who have installed PV more 

than a year previously is quite similar to the effect of recent neighbors.  This is likely due to the 

imbalance in the data over time; there are many more installations in recent periods so older neighbors 

are relatively rare.  In the Appendix (Table 9) we compare results for eight versions of the neighbors 

variable: radii of 0.5, 1, 2, and 5 kilometers over 1 and 2 years.  Unsurprisingly, the effect diminishes 

with distance bolstering our confidence in the variable as an information transmission proxy.  The effect 

also diminishes over time.  The effects become insignificant beyond 2 km after one year, and beyond 

0.5km after 2 years.  Nearby neighbors who have installed PV recently are most strongly associated with 

lower price dispersion. 

Quotes become insignificant with the alternative specification (Table 4).  The quantity of quotes 

available in a market is significant but whether any quote had been made is not.  While this does not 

enhance the robustness of the findings on the quote variable, it is also unsurprising.  The binary quotes 

available variable is a blunter measure than the density of quotes and thus less powerful.   
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Table 4. Coefficient estimates from regressions of y=log CV by quarter by county on Xs for 2008-14 

installs. State and quarter effects included. Each x is the logged mean for each county and quarter. 

 

 

Third, we consider alternative approaches to characterizing TPO systems and the time trend.  In Table 10 

in the Appendix we assess the changes to effects when dropping TPO systems altogether, rather than 

controlling for them with a dummy.  The results are generally the same.  Quotes and neighbors remain 

negative and significant, but in both cases are larger.  Our interpretation is that the access to 

information that neighbors and quotes provide matters more for customer owned systems than for TPO 

systems, as would be expected given the different business processes underlying TPO system pricing.  

Finally, in Table 11 we include a time trend rather than quarter dummies.  The time trend is negative 

and significant indicating that price dispersion has fallen over the 2008-14 time period after controlling 

for the variables included in models 2-6.   

 

6. DISCUSSION AND CONCLUSION 

This study assesses the existence of and factors affecting price dispersion in U.S. residential PV 

installations from 2008 to 2014.  We find levels of price dispersion higher than those of the mean of 

previous studies of price dispersion in other areas.  While price dispersion is empirically common, our 

results indicate that PV markets violate the law of one price even more than many other products.  

Some explanations are 1) that PV systems are not actually a homogenous good, and 2) that PV markets 

are not fully competitive.  We aim to address point 1 by controlling for size, system characteristics and 

the value of solar.  We address point 2 by carefully accounting for market concentration, using multiple 

market definitions.  Still, we see wide dispersion in prices even after controlling for product 
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differentiation and market structure.  Crucially, our 7-year time series shows that price dispersion is 

persistent; it has not substantially diminished as PV markets have matured.  The existence of price 

dispersion matters in part because some consumers are paying higher, and in some cases much higher, 

prices than others.  The perhaps more important outcome of persistent price dispersion is the set of 

consumers that we do not see in our data: those which do not adopt solar because they perceive that 

prices are higher than what is actually available or because they are unwilling to invest the time in 

search (Rai and Beck 2015).   

We thus conclude that finding ways to reduce price dispersion could have substantial public benefits.  

Unless there is a strong and persistent barrier to entry, reducing price dispersion will lower not raise 

consumer prices.  The results we discuss in Section 5 are manifold.  But perhaps the most robust insight 

is that the evidence of an information problem in the residential PV market fits well with the economic 

literature on consumer search.  Where and when the benefits of search are high (large system size, 

value of solar), price dispersion is smaller.  Where and when the costs of search are low (having 

neighbors with PV, having many quotes in the market) price dispersion is also smaller.  These results are 

thus encouraging for policy programs that increase access to information, such as by making installer 

price quotes more broadly available.  A successful example is the Dept. of Energy’s incubator award for 

EnergySage.  The results also make clear that pricing is more competitive, i.e. smaller CV, in clusters of 

installations where potential consumers can make use of a trusted and relatively accessible information 

source, their neighbors.  On the one hand, this might suggest that targeting adoption in existing clusters 

has higher potential to result in low-priced solar.  On the other hand, it suggests that establishing new 

clusters likely needs extra assistance in providing potential consumers with reliable information about 

installer quality and pricing. 
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A. APPENDIX: DATA SET DESCRIPTIVE STATISTICS, VARIABLE DEFINITIONS 

A.1. Additional descriptives 

Table 5. Variable definitions for variables used in main regression results. 
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Table 6. Summary statistics for all variables for systems installed 2008-14. Note: This represents the 

full set of variables considered for the present work. Only a subset was ultimately used, focusing on 

those linked with previous economic literature on price dispersion. 
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Figure 13. Distributions of installed prices (constant $/W). 

 

 

Figure 14. Trend in quarterly CV in the largest new market definitions (based on 2014 installs). N is 

for all years. 

 

 

Figure 15. Comparison of CV and the measure of dispersion typically used in TTS, the 20-80 range. 
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Table 7. Correlations among regressors in specification #2. 

  HHI TPO Exp. VoS Size Educ Income Wage 

Mod 

Price 

HHI 1         

TPO -0.241 1        

Exp. -0.208 0.268 1             

VoS -0.253 -0.102 0.023 1      

Size -0.081 0.242 0.036 -0.131 1     

Educ -0.197 0.026 0.145 0.030 -0.133 1       

Income -0.244 0.217 0.253 0.138 0.044 0.772 1   

Wage -0.077 0.075 0.095 0.038 -0.030 0.336 0.392 1  

Mod Price 0.103 -0.309 -0.118 0.534 -0.300 0.011 -0.021 -0.034 1 

Neighbors -0.236 0.226 0.314 0.257 -0.067 0.277 0.321 0.206 -0.076 

 

Table 8. Summary statistics for neighbors variables for systems installed 2008- 14. 
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A.2. Additional robustness checks 

We include the results of additional analyses using alternative estimators.   

 

Table 9. Sensitivity to neighbors definitions. Coefficient estimates from regressions of y=log CV by 

quarter by county on Xs for 2008-14 installs. State and quarter effects included. Each x is the logged 

mean for each county and quarter. 
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Table 10.  Effects of dropping TPO systems. Models 2-6 omit TPO systems. Coefficient estimates from 

regressions of y=log CV by quarter by county on Xs for 2008-14 installs. State and quarter effects 

included. System characteristics measure dispersion within a county quarter.  All other x’s are the 

logged mean for each county and quarter.   
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Table 11. Include application year as an X to see trend in CV. Coefficient estimates from regressions of 

y=log CV by quarter by county on Xs for 2008-14 installs. State effects included (but not quarter effects). 

System characteristics measure dispersion within a county quarter.  All other x’s are the logged mean 

for each county and quarter.   
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A.3. Calculating performance ratio 

We use a performance ratio (PR) to proxy for system quality.  Some installers are able to charge 

premiums, potentially based on reputation for high quality, which we proxy for as enhanced system 

performance over time. We define “quality” as the ability of a system to achieve production that closely 

approximates expected production over time. By constructing a ratio of observed average annual 

production to expected we seek to account for some of the variation in price resulting from the installer 

providing services resulting in quality not reflected in system size but in the installed price ($/Watt).  

Figure 16 shows the resulting performance ratio values. 

 
Figure 16. A proxy for quality: performance ratio 2010-14 by install date. 

 

Data 

Alternating current (AC) capacity comes from the California Solar Initiative (CSI) 

(https://www.californiasolarstatistics.ca.gov/data_downloads/).  

Production data comes from CSI 15-Minute Interval Data 

(https://www.californiasolarstatistics.ca.gov/data_downloads/). Comprised of metered generation from 

504 CSI systems starting in 2010 and ending in 2016 and time stamped in fifteen minute intervals, this 

data provides the measured production. Measured systems come from the three largest utility service 

areas in California: Pacific Gas & Electric, Southern California Edison, and San Diego Gas & Electric.  

Irradiance data comes from the National Solar Radiation Database (NSRDB) Physical Solar Model (PSM). 

This database has a spatial resolution of 4x4 kilometers, at half-hour intervals, and includes years 1998 

to 2014. 

Tracking the Sun (TTS) system data are matched to production data to generate this data sample, which 

includes 161 different installers. 

Census tract GIS layers came from U.S. Census cartographic Boundary shapefiles 

(https://www.census.gov/geo/maps-data/data/cbf/cbf_tracts.html).  

https://www.californiasolarstatistics.ca.gov/data_downloads/)
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Procedure 

To produce system-specific PRs we matched systems in the TTS data set with production data from the 

California Solar Initiative 15-Minute Interval Data. Of the 504 systems matched in TTS, 424 comprise this 

analysis. We aggregated 15-minute interval CSI production data to the monthly level. We also filtered 

out negative production values. System outages due to equipment malfunction are included in the data 

sample used for analysis. These data are important to distinguish systems that are underperforming 

relative to their rated potential. 

Generating system-specific PRs required matching locations of irradiance to system locations. The TTS 

dataset includes geocoded system locations, as do NSRDB irradiance measurements. Using ArcGIS 

system locations and irradiance measurements along with census tract data layers, we plotted and 

overlaid system locations and irradiance measurements on census tracts in California. We then 

identified census tract centroid points and used inverse distance weighting to generate a weighted 

average irradiance value for each census centroid associated with the closest system location. Similar to 

production data, we aggregated 30-minute average irradiance values to monthly insolation values for 

the PR calculation. 

We control for outliers by finding values more than 2 standard deviations above and below the median 

for the systems in this sample. Defined as such, roughly 5% of the calculated PRs represent outliers.  

Using the 95th percentile as the value representing the threshold for ‘healthy’ measurements, all PRs are 

divided by the PR value representing the 95% percentile. This provides a dimensionless and normalized 

performance metric near unity when the system is operating near its design-specified full performance. 

This is an attempt to eliminate the influence of high outliers due to unknown module additions since 

completion of the original installation. 

Median monthly PR values (Equation 1), averaged yearly, represent the average annual performance of 

each system. Importantly, even though production monitoring began for the majority (~95%) of systems 

in 2010 and 2011, the years of installation differ from initial monitoring dates. Therefore, we created an 

age index so that system PR comparisons come from their ith year of operation. The 3rd and 4th years of 

operation had the highest number of observations and are what we present to facilitate comparison as 

average annual PR values.   

Performance Ratio 

Equation 1 shows the PR adapted from a more general definition available from Sandia Laboratories 

(https://pvpmc.sandia.gov/modeling-steps/5-ac-system-output/pv-performance-metrics/performance-

ratio/) with the measured divided by expected generation taken as a median annual value. Equation 1 

converges in probability to the median in a normal distribution that matches the mean. The numerator 

represents monthly measured production in kWh. The AC rating differs from the more general definition 

provided above because instead of a rating based on standard test conditions (STC—1000w/m2, 25 

degrees C cell and ambient temperature, and 1.5 air mass) it uses the more conservative Photovoltaics 

for Utility Scale Applications (PVUSA Test Conditions or ‘PTC’—1000w/m2, 45 degrees C cell 

temperature, 20 degrees C ambient temperature, and 1 meter/second wind speed for module cooling). 

For this particular rating, the PTC–AC is multiplied by a design factor and inverter efficiency equaling the 

https://pvpmc.sandia.gov/modeling-steps/5-ac-system-output/pv-performance-metrics/performance-ratio/)
https://pvpmc.sandia.gov/modeling-steps/5-ac-system-output/pv-performance-metrics/performance-ratio/)
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CSI–AC rating. Importantly, it includes a design factor. The design factor is a ratio comparing a proposed 

system’s expected generation with that of a baseline system that includes optimal tilt and azimuth, a 

proposed location versus the actual location, and applying an adjustment for the effect of mounting 

method on module temperature’s impact on production. We use the CSI–AC system rating instead of 

the STC rating because it more closely characterizes the probable output of the entire system.  

 𝑃𝑅𝑗 =
1

12
∑ [

𝐸𝑖𝑗

𝑘𝑊𝐴𝐶_𝑖𝑗(
𝐼𝑛𝑠𝑖𝑗

𝑘𝑊𝑆𝑇𝐶
)
]12

𝑖=1         (1) 

Where: 

t = Time period, monthly 

Ei, j = average metered energy output (kWh) 

kWAC_i,j    = CSI Rating of each system (kW-AC) 

Insi,j = average insolation per square-meter at census centroid containing system i 

kWSTC = irradiance at standard test conditions (STC) (1,000W/m2) 

An additional advantage of the CSI rating is that it does not penalize systems for shading and suboptimal 

tilt. We do not want to penalize systems with shading because installers may have little control over 

shaded site conditions. Although under the control of the installer, optimal tilt is unlikely for a number 

of reasons. First, residential installations infrequently build in tilt above the existing pitched roof. 

Second, on flat roofs, module density may be a more important design criterion that optimal tilt. In 

other words, systems are frequently designed for legitimate purposes other than maximizing annual 

energy output. This is especially true as module price continues to decline.  In the event, we used a 

system rating that penalizes based on shade and tilt, systems designed for maximum energy harvest 

would likely have higher PR values than those designed based on other criteria. Our definition of quality 

seeks to capture how well a system performs over time given site-specific characteristics and design 

choices made to fit customers’ needs. 

Another choice that deviates from more conventional use of the PR that merits explanation in using the 

CSI rating is that it mixes AC with DC in the denominator. If the ratio between DC array and inverter 

capacity were much higher than 1.0, as can be frequently found in large commercial and utility scale 

installations, magnitudes could get distorted. This is not typically the case for residential PV systems. 

Additionally, when including DC rating instead of the CSI rating, the distribution is not significantly 

altered and we consider the inclusion of the attributes contained in the CSI rating important enough to 

warrant its use. 

The gold standard for PV system performance is irradiance measured into the exact plane-of-array (POA) 

of each PV system, which is not feasible due to data limitations. Of the three kinds of irradiance data, 

global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and direct normal irradiance (DNI), 

only GHI is used here. GHI is the sum of DHI and DNI and assumes arrays are horizontally tilted. In the 

absence of POA and where only GHI values exist, GHI is the preferred measure of irradiance because DNI 

gives values that are too high in the morning and evening and DHI misses diffuse light.   
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A.4. Defining non-political market definitions 

Solar PV market research to date has used various boundaries based on political jurisdictions to define 

markets, primarily county-level boundaries. However solar PV markets have exhibited spatial clustering 

that defies jurisdictional boundaries (Bollinger and Gillingham 2012). The inadequacy of jurisdictional 

boundaries for market research in general has given rise to a body of literature on the study of market 

definition. The literature suggests that the use of jurisdictional boundaries (e.g., county) may 

misrepresent true market dynamics. In general, the task of market definition is to delineate market 

boundaries based on some conception of product substitutability (Massey 2000; Baker 2007; Davis and 

Garces 2010; Boshoff 2014).  

Building on this literature, O’Shaughnessy et al. (2016) developed a market definition methodology for 

solar PV markets based on the spatial distribution of installers. The theoretical basis is that solar PV 

installers exert local price constraints on other installers within a limited geographic area. These price 

constraints decrease with distance because the vast majority of installers are local small-scale 

businesses. In order to proxy for these price constraints, an installer overlap coefficient (IOC) was 

developed to capture the extent to which an installer community in one region x resembled the installer 

community in another region y: 

𝐼𝑂𝐶𝑥,𝑦 = 𝜌𝑥
𝑦

∗ 𝜌𝑦
𝑥              (2) 

Where 𝐼𝑂𝐶𝑥,𝑦 is the IOC between regions x and y, 𝜌𝑥
𝑦

 is the percentage of installers in region x that also 

operate in region y, and 𝜌𝑦
𝑥 is the percentage of installers in region y that also operate in region x. For 

the purposes of the methodology, an installer is considered to operate in a given region if the installer 

has installed at least one system in that region over some given timeframe. 

The following algorithm describes the market definition method: 

A candidate market is identified as the region with the maximum summed value of IOCs  

The six nearest neighboring regions to the candidate market are assigned to the candidate market 

Additional regions are assigned to the candidate market if (a) the IOC with the candidate market 

exceeds a specified critical value (e.g., 0.25) and (b) the region is contiguous with the candidate market 

through other regions assigned to the candidate market.  

Steps 1 through 3 are repeated until all regions are assigned to markets. 
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Figure 17. Visualization of the IOC algorithm in Sacramento County.  Source: O’Shaughnessy, Nemet et al. 

(2016) 

Several specifications of the IOC algorithm were explored and spatial statistical analyses were 

performed to study the appropriateness of various solar PV market definitions. In general, the IOC 

market definition approach results in more solar PV market granularity than a county-level approach. 

Further, the analytical results suggest that county-level market definitions may be overly broad in terms 

of studying solar PV market dynamics (O’Shaughnessy, Nemet et al. 2016). 

We use the methodology developed in O’Shaughnessy, Nemet et al. (2016) to define markets for the 

current study. We use a critical IOC value of 0.25 applied to zip codes. In other words, a candidate 

market zip code is identified then nearby zip codes are assigned to the candidate market if their shared 

IOC is greater than 0.25 (indicating that at least 50% of the installers in one zip code are also present in 

the other zip code). We use a spatial smoothing process described in O’Shaughnessy et al. (2016) to 

group isolated zip codes into nearby markets.  

The use of the installer-based market definition allows us to study local market dynamics with far more 

precision than would be possible under a county-level market definition. To illustrate, consider two 

installers “X” and “Y” that operated in Los Angeles County in 2013 and 2014. At the county level, both 

installers held similar market shares of below 4% of installs over this timeframe. However, the IOC 

market definition approach demonstrates that installers X and Y held significantly higher market shares 

in local pockets of Los Angeles County, with installer Y holding a 22.5% market share in one IOC-defined 

market in southeastern Los Angeles County (Figure 18). Applying the IOC market definition in the 

present study allows us to better understand the effects of local market shares below the county level. 
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Figure 18. Depiction of installer market shares under a county-level market definition (left pane) and 

the IOC market definition (right pane). In the right pane, different colors correspond to separate 

markets. Source: O’Shaughnessy, Nemet et al. (2016) 

A.5. Description of third-party quote data 

A dataset of 647,728 quotes made from 2012 to 2016 for systems matching the characteristics of 

systems in our analysis (1-15 kW) was assembled from a third-party quote provider (Set A). The dataset 

was used as a proxy to determine where third-party quote provider services were generally available. 

Similarly to Tracking the Sun data, the quotes are heavily concentrated in California, but otherwise 

broadly distributed through every state included in our analysis. A second data set of 11,306 quotes 

from a second provider was also included (Set B).  The TTS set includes PV installations in 8709 zip codes 

from 2008-14.  The large set of quotes (A) included quotes in 5467 zip codes.  The second smaller data 

set (B) included quotes from 331 additional zip codes, i.e., it added 6% to the set A quotes.  83% of the 

zips included in set B were also included in set A.  The quotes variable was calculated as the number of 

quotes in a quarter in a county divided by the number of PV installation in that county quarter. 



38 

 

Figure 19. Quotes per state  
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